Таинственный геном человека - Страница 54


К оглавлению

54

В 1991 году, почти через 30 лет после того, как Лайон пришла в голову идея инактивации, ученые из Стэнфордского университета выяснили, что один ген в инактивированной Х-хромосоме играет ключевую роль в процессе ее отключения. Этот ген назвали Xist, что расшифровывается как X inactive specific transcript. Ученые также предположили, что он должен действовать путем трансляции в соответствующий Xist — белок. Но его поиски ни к чему не привели. Это было удивительно, ведь они могли отследить экспрессию гена в соответствующую информационную РНК, которая проходила сплайсинг для удаления интронов и экзонов, соединенных друг с другом традиционным образом. Однако после этого иРНК не перемещалась в рибосомы для производства белка. Кажется, пришло время снова сесть на наш волшебный поезд, чтобы воочию понаблюдать за одним из самых поразительных недавних открытий в области человеческого генома. Мы въезжаем в волшебную страну, и я направляю поезд по одному из двух одинаковых путей — Х-хромосом. Мы попали в геном эмбриона женского пола в критический 16-й день эмбриогенеза.

Мы видим, как делятся клетки эмбриона и копируется геном. Рельсы нашего пути расходятся, разрываются слабые водородные связи между шпалами, и смысловая нить ДНК отделяется от антисмысловой. Скорость копирования потрясает. Надвигается метель, но вместо снежинок в ней нуклеотиды РНК — Г, А, Ц и У. На наших глазах некоторые участки смысловой нити начинают светиться разными цветами. Одни из них обозначают гены, другие — промоторы, третьи — вирусные участки, а четвертые — участки, о которых мы пока ничего не знаем. Этот процесс очень похож на кодирование белка, которое мы уже видели и при котором нить ДНК копируется на нить информационной РНК. Но здесь, судя по всему, копирование не прекращается и захватывает несколько тысяч нуклеотидов, составляющих примерно один ген. Формируется огромная молекула РНК, состоящая из 17 тысяч нуклеотидов. Судя по всему, она имеет необычную внутреннюю структуру, в которой присутствуют генетические эквиваленты точек, или стоп-кодоны. До этого мы не видели ничего подобного.

— Что это такое?

— Это длинная некодирующая РНК, результат работы того, что некоторые генетики называют РНК-геном. Научное название для нее — Xist — РНК.

Мы наблюдаем, как молекула РНК проплывает над Х-хромосомой, изменяя эпигенетические маркеры активирующих гены гистонов таким образом, что группы гистонов превращаются в плотные некодирующие формации, и собирая вокруг себя облачка белков для метилирования пар Ц — Г.

— Что происходит?

— Она отключает хромосому, но не целиком, а лишь на 60 %.

Xist был признан первым из нового удивительного класса эпигенетических контролирующих механизмов, которые мы сегодня называем длинными некодирующими РНК, или днРНК. Вскоре после этого была открыта еще одна днРНК, которая объяснила важную эпигенетическую загадку.

Генетики уже знали, что геном может распознавать происхождение хромосом из пары. Иными словами, он может выбирать отцовскую или материнскую хромосому при экспрессии определенного гена или группы генов. Эпигенетический механизм, который называется импринтингом, является ключевым фактором в развитии таких генетических заболеваний, как синдромы Прадера — Вилли или Ангельмана, потому что он выбирает поврежденную хромосому, полученную от одного из родителей, в то время как парная ей может быть абсолютно здоровой. Генетики выяснили, что основным механизмом действия импринтинга является эпигенетическое отключение определенной области второй (не выбранной) хромосомы с помощью длинной некодирующей РНК, получившей название Air.

Вдохновленные этими открытиями, ученые начали искать другие длинные некодирующие РНК и выяснили, что они вписаны в различные участки генома млекопитающих. Со временем днРНК были признаны частью недавно открытой и очень мощной эпигенетической регуляторной системы, что дало толчок новым исследованиям, которые ведутся и сейчас, пока я пишу эту книгу. Мы уже знаем, что человеческий геном, как и геном растений и животных, содержит множество длинных и коротких некодирующих РНК, среди которых днРНК длиной от 200 до 100 тысяч нуклеотидов выделяются в отдельный класс. То, что мы знаем о кодировании таких днРНК, на первый взгляд кажется необычным, но при этом поразительно логичным.

Существует второй, совершенно новый вариант считывания всего генома. Этот вариант затрагивает обычные границы генов или регуляторных последовательностей. В таком случае можно кодировать любую последовательность, входящую в состав экзона, группы экзонов, промоторного региона, или комбинации промотора и экзона, или регуляторного длинного кольцевого повтора вируса, или всего этого вместе. В результате транскипции возникают некодирующие молекулы РНК.

Вот вам и объяснение неизвестных 50 % генома.

Я вижу удивление на вашем лице. Мы все еще находимся на волшебном поезде, направляясь в обычный мир.

— Загадка состояла в том, как именно получались такие геномные последовательности. При прочтении генома в 2001 году все последовательности информационных РНК, обнаруженные в человеческой клетке, компилировались с помощью технологии, носящей название маркерных экспрессируемых последовательностей. Информационная РНК реверсировалась до ее комплементарной ДНК, или кДНК, поэтому схема 2001 года основывалась не на ДНК человеческого генома, а на совокупности кодов всех информационных РНК, экспрессированных из ДНК.

Вы все еще качаете головой.

54