Потрясенные ученые осознали, что крошечные молекулы миРНК умеют отключать определенные информационные РНК. Иными словами, даже после того, как трансляция уже произошла, то есть информационная РНК была скопирована с гена, интроны удалены, а экзоны соединены вместе и готовая молекула РНК уже готова попасть в цитоплазму и кодировать белок, молекулы миРНК могут остановить процесс.
Теперь, по прошествии времени, мы понимаем, почему шведские ученые считали необходимым рассматривать вирусные белки не только как транскрипты информационной РНК, но и как экспрессированные белки в клетках.
Этот эпигенетический механизм называется РНК-интерференцией, которая представляет собой еще один способ эпигенетического контроля. Выводы из этого открытия казались невероятными. РНК-интерференция распознает ключевые последовательности в определенных молекулах информационных РНК, чтобы дезактивировать их или полностью уничтожить. В 2006 году Файер и Мелло получили за это открытие Нобелевскую премию по физиологии и медицине.
С самых первых дней ученые действовали на основании догмата о том, что гены кодируют строго определенные белки. Затем выяснилось, что для этого требуются молекулы информационной РНК — иРНК. Другой тип РНК, транспортная, или тРНК, необходим для транспорта аминокислот в рибосомы, а третий, являющийся частью базовой структуры рибосом (рибосомальная РНК), считывает информацию с иРНК и превращает код в белок. Однако в начале существования генетики эти роли считались вторичными или, по крайней мере, промежуточными и не такими важными, как благородная центральная парадигма «ген — белок». Но теперь ученые узнали о четвертом типе РНК, РНК-интерференции — молекулярном выключателе! Разумеется, все три типа РНК, кроме информационной, должны кодироваться в хромосомах с помощью последовательностей ДНК. Но эти кодирующие области сложно назвать генами. Раз их конечным продуктом являются РНК-молекулы, значит, они не кодируют белки.
Генетики столкнулись с дилеммой. Как именно следует классифицировать генетические последовательности, кодирующие РНК? Кроме того, после открытия РНК-интерференции ряд других мелких «некодирующих» РНК тоже ставили парадигму под сомнение.
Некоторые предлагали концепцию РНК-гена, то есть гена, кодирующего РНК, но у других имелись сомнения на этот счет. Однако, как бы там ни было с терминологической точки зрения, не оставалось сомнений, что человеческий геном содержит коды большого количества разнообразных РНК-молекул, которые не кодируют белки, но тем не менее играют существенную роль в контроле и экспрессии генов.
Ингибирование РНК небольшими, некодирующими двойными молекулами РНК имело не только теоретическое значение, но и практическую важность для биологов и генетиков. Теперь они могли изучать роль того или иного гена, наблюдая за тем, что произойдет с клеткой или живым организмом после его «выключения». Эта технология имеет огромный медицинский потенциал. Например, некоторые женщины наследуют мутации генов BRCA1 или BRCA2, отвечающие за развитие рака груди или яичников. У других пациентов рано развиваются симптомы болезни Хантингтона. Теоретически, для того чтобы избавить этих людей от мучений, можно всего лишь отключить соответствующий мутировавший ген. В будущем, а возможно даже раньше, чем мы предполагаем, генетики научатся это делать.
Кроме того, РНК-интерференция — это не единственный способ влияния РНК на регулирование генов. Группа небольших некодирующих РНК, называемых piРНК, играет важную роль в эпигенетическом подавлении опасных вирусных последовательностей в человеческом геноме. Более того, существует еще один, даже более интересный, класс некодирующих РНК, который регулирует человеческий геном. Это сравнительно недавнее открытие, объясняющее черную дыру, существовавшую в проекте расшифровки генома 2001 года, — те 50 %, которые были пустыми.
У всех млекопитающих имеется половая дифференциация хромосом — X и Y. Женщины наследуют от каждого из родителей по одной Х-хромосоме, а мужчины — Х от матери и Y от отца. Кроме того, мы получаем от каждого из родителей по 22 неполовые хромосомы, называемые аутосомами. В итоге формируется ядерный геном из 46 хромосом. В то время как Y-хромосома содержит 78 генов, кодирующих белок и в основном отвечающих за образование яичек, мужское телосложение, фертильность и производство спермы, Х-хромосома насчитывает около 2000 генов, лишь отдельные из которых имеют отношение к полу. Такое хромосомное несоответствие между полами ведет к потенциальному дисбалансу в регулировании эмбриологического развития. Если бы половые хромосомы были полностью экспрессированы во время эмбриогенеза, эмбрионы женского пола (как и женщины в течение всей жизни) получали бы двойную дозу генов Х-хромосомы, а эмбрионы мужского пола (и мужчины) — одинарную. Это могло бы привести к существенным регуляторным проблемам.
В 1961 году Мэри Ф. Лайон, бывшая ученица пионера эпигенетики Конрада Х. Уоддингтона, поняла, что разгадка может заключаться в отключении одной из Х-хромосом у женщин. Ее идея подтвердилась, когда генетики доказали, что «Х-инактивация» у эмбрионов женского пола происходит примерно на 16-й день развития. Удивительно, что при этом не выбирается Х-хромосома определенного родителя. Инактивация случайным образом касается либо отцовской, либо материнской Х-хромосомы. Кроме того, отключается не вся хромосома, а около 60 % ее генов. Оставшиеся 40 % необходимы для защиты эмбриона от рецессивной мутации по Х-хромосоме. Вот почему у женщин почти не бывает цветовой слепоты или гемофилии. Им бы понадобилась двойная доза мутировавших рецессивных генов, в то время как мужчинам хватает одной копии, содержащейся в Х-хромосоме.