В тот год несколько исследователей из разных стран мира предположили, что нуклеиновые кислоты могут стать ключом к тайне наследования. Эти соединения были открыты в конце XIX века швейцарским биохимиком Иоганном Фридрихом Мишером. Он интересовался химией клеточных ядер, и из белых кровяных клеток, содержащихся в гное, а также из сперматозоидов лосося ему удалось выделить новое химическое соединение с высокой кислотностью, богатое фосфором и состоявшее из невероятно больших молекул. После многолетних исследований ученик Мишера Рихард Альтман ввел для описания этого открытия термин «нуклеиновая кислота». К 1920-м годам генетики уже знали, что существует две разновидности нуклеиновых кислот: рибонуклеиновая кислота, или РНК, состоящая из четырех структурных веществ (гуанина, аденина, цитозина и урацила, или ГАЦУ), и дезоксирибонуклеиновая кислота, или ДНК, являющаяся основным компонентом хромосом. Ее элементы почти совпадают с компонентами РНК, только вместо урацила в ДНК присутствует тимин (ГАЦТ). Ученым было известно, что эти базовые компоненты можно разделить на две пары сходных органических веществ: аденин и гуанин являются пиринами, а цитозин и тимин — пиримидинами. Было понятно и то, что, связываясь, эти вещества образуют очень длинные молекулы. Первоначально генетики полагали, что РНК характерна для растений, а ДНК — для животных, но к началу 1930-х годов было обнаружено, что обе нуклеиновых кислоты равно распространены как в растительном, так и в животном мире. Тем не менее роль нуклеиновых кислот в ядре клетки все еще была неясна.
Фибус Аарон Левин, блестящий химик-органик, работавший в Рокфеллеровском институте, предположил, что ДНК и РНК имеют банальную структуру — идентичные группы из четырех компонентов повторяются и повторяются по всей длине молекулы. Это предположение называется тетрануклеотидной гипотезой. Разумеется, такая банальная молекула не могла служить основанием для сложнейшего процесса наследования. Как писал Хорас Фриленд Джадсон, «ученые с догматическим упорством придерживались мнения, что ДНК представляет собой всего лишь структурную подпорку, вешалку для рубашки, подрамник для шедевра Рембрандта, в то время как генетическим материалом должен быть белок».
Белки — это длинные молекулы, состоящие из более мелких органических соединений, называемых аминокислотами. В формировании белков участвуют 20 аминокислот, которые можно сравнить с буквами, составляющими алфавит. Если приравнивать гены к словам, то лишь сложные белки были бы в состоянии составить слова, пригодные для рассказа целой истории. Химики (а за ними и генетики) не без оснований полагали, что только такой уровень сложности может обеспечить создание шаблона памяти, требующегося для запуска процессов наследования. Джадсон назвал этот подход «белковой версией центральной догмы».
Именно этому духу времени и противоречил Эвери. Начиная с 1935 года он указывал в своих годовых отчетах перед правлением института, что трансформирующее вещество не содержит капсульных полисахаридов и, соответственно, не является белком.
Однако дальнейшего прогресса в этой области исследований не наблюдалось. Частично это объяснялось тем, что Дюбо, работавший в том же отделе, совершил прорыв в изучении антибиотиков. В 1925 году Александр Флеминг из лондонского госпиталя Святой Марии открыл потенциальный антибиотик пенициллин, но не смог довести работу до стадии эффективного производства в медицинских целях. Действуя в соответствии с библейским принципом «прах к праху», Дюбо первым начал исследовать почвенные микробы, которые потенциально могли атаковать полисахаридную оболочку пневмококков. К началу 1930-х годов ему удалось добиться прогресса. На клюквенном болоте в Нью-Джерси он обнаружил палочку, которая при помощи своей похожей на броню внешней оболочки разрушала толстую полисахаридную капсулу, окружавшую клетки пневмококков. Дюбо получил энзим, который выделяла эта палочка, и в 1930 году совместно с Эвери опубликовал в журнале Science статью о своем успехе. В последующих публикациях ученые рассказывали о дальнейших экспериментах, направленных на применение клюквенного энзима в лечении человека, а именно о потенциально смертельных пневмонии и менингите, вызываемых пневмококками.
Однако Дюбо и Эвери постоянно сталкивались с препятствиями в работе. Частично это объясняется тем, что многое в новаторской области исследований было им неизвестно. Более личной и серьезной проблемой был развившийся у Эвери из-за стресса тиреотоксикоз — подрывающее силы аутоиммунное заболевание, вызванное избыточной активностью щитовидной железы.
При тиреотоксикозе организм буквально затопляют тиреодные гормоны, и метаболизм начинает работать на износ, вызывая опасное переутомление. Эвери постоянно чувствовал дрожь, возбуждение, физическое и душевное беспокойство, он не мог расслабиться и страдал от нарушений сна. Для творческого человека находиться в таком состоянии невозможно. Ему пришлось на некоторое время уйти из лаборатории и лечь в больницу для удаления «токсичного зоба». Нужно сказать, что такая операция имеет высокий риск побочных эффектов и в некоторых случаях может привести к смерти пациента. Хирург рекомендовал Эвери в первое время после процедуры избегать любых физических и умственных нагрузок. Дюбо вспоминает, что Эвери не возвращался в лабораторию в течение полугода, а без него работа медленно угасала. Дюбо писал: «Я занимался [своим исследованием] три или четыре года, но не смог продвинуться в нем достаточно далеко, потому что и в моих знаниях в области генетики и биохимии, и в состоянии самих этих наук имелись серьезные пробелы».