Таинственный геном человека - Страница 28


К оглавлению

28

6. Родственная молекула

У меня есть ощущение, что если ваша структура верна и если в ваших предположениях относительно природы репликации есть хоть капля истины, начнется шумиха, которая всколыхнет всю эволюционную биологию.

Макс Дельбрюк — Уотсону

Джадсон, который считается историком открытия ДНК, описывает расшифровку структуры ее молекулы как «осаду и завоевание». Поскольку трехмерная структура ДНК и ее четырехбуквенный код для записи наследственности стали наконец-то известны науке, можно было ожидать наступления эры просвещения. Но на самом деле в научном мире царила атмосфера непонимания. Открытие Уотсона и Крика вызвало бесконечное количество новых вопросов. Во-первых, действительно ли ДНК является средством кодирования наследственности всех живых организмов? Некоторые ответы на этот вопрос уже были получены: Эвери открыл ДНК у бактерий, фаговая школа работала над ДНК вирусов, а затем Чаргафф подтвердил ее наличие в клетках различных форм жизни. Итак, ДНК была универсальна. Во-вторых, как именно этот простейший четырехбуквенный код (Г, А, Ц и Т) обеспечивает образование от 80 до 100 тысяч белков, необходимых для построения и функционирования человеческого тела и всех других живых организмов на Земле?

Позднее Крик вспоминал, что у них имелся проект ответа белковой загадки. Так как структурная основа спирали состоит из повторяющихся фрагментов сахара и фосфата, единственными веществами, способными к кодированию наследственности и трансляции белков, были четыре нуклеотида, иначе называемые основаниями, или последовательностями оснований (ГАЦТ). Некоторые шаги к раскрытию этой тайны уже были сделаны. Эволюционный биолог Томас Хант Морган, работавший с плодовыми мушками в лаборатории Колумбийского университета, открыл, что геном состоит из хромосом. Морган, Мёллер и их коллеги установили, что и сами хромосомы разделены на дискретные участки, называемые генами. Следующий шаг — предположение о том, что гены кодируют определенные белки, — был сделан британским врачом Арчибальдом Э. Гэрродом еще в 1908 году, когда он понял, что наследственное заболевание алкаптонурия, вероятно, вызывается дефектом определенного энзима. Энзим — это белок, который ускоряет химические реакции в живых системах. Но Гэррод не смог пойти дальше и доказать, что дефект в энзиме — лишь отражение дефекта в гене. Связь между генами и белками подтвердили двое американцев — генетик Джордж У. Бидл и биохимик Эдвард Л. Тейтем, которые изучали наследственную передачу цвета глаз у плодовых мушек. К 1941 году они переключили внимание на грибки, заражающие заплесневелый хлеб, и сумели доказать, что определенный энзим, влияющий на химические процессы в плесени, кодируется одним геном. Это открытие привело к возникновению максимы «один ген — один белок». Но каким образом четырехбуквенный код ДНК превращается в 20-буквенный код белка (где под буквами мы имеем в виду аминокислоты)?

Для Фрэнсиса Крика именно эта загадка и была главной целью всей его научной деятельности, вдохновленной книгой Шрёдингера. После открытия двойной спирали из-за недостатка финансирования Уотсон вскоре был вынужден вернуться в Штаты, а Крик продолжил биться над тайной белков.

Поскольку ДНК содержится в ядре клетки, а производство белков осуществляется за пределами ядра в цитоплазме, вероятно, код гена должен каким-то образом копироваться, чтобы попадать в нее. Эта мысль заставила Крика обратить внимание на родственную молекулу ДНК — рибонуклеиновую кислоту, или РНК.

Между двумя молекулами существует вполне очевидное сходство. И та и другая — нуклеиновые кислоты, состоящие из различных последовательностей четырех нуклеотидов. В то время как ДНК составляют гуанин, аденин, цитозин и тимин (ГАЦТ), РНК состоит из гуанина, аденина, цитозина и урацила (ГАЦУ). В отличие от ДНК спираль РНК (в большинстве случаев) состоит не из двух, а из одной нити. Кроме того, роль сахара в РНК играет рибоза (вместо дезоксирибозы, входящей в состав ДНК). На момент открытия Уотсоном и Криком трехмерной структуры ДНК молекулярные биологи и генетики всерьез интересовались ее родственной молекулой. Незадолго до их прорыва многие ученые уже полагали, что РНК имеет большое значение для работы клетки.

В то же время у них были некоторые вопросы. Так, количество ДНК в клетках разных органов, например мозга и печени, остается неизменным, а вот объем РНК, судя по всему, варьируется. Более того, ДНК обнаруживалась только в ядре, в то время как РНК можно было найти и за его пределами в цитоплазме — той части клетки, в которой протекает большая часть химических процессов. Еще больше исследователей запутывало то, что количество РНК в клетке, очевидно, зависело от активности самой клетки. Растущая клетка, производящая большое количество белка, содержит больше РНК, чем взрослая и переживающая меньше химических процессов. Например, клетки печени, считающиеся фабрикой по выработке белка, оказались буквально набиты РНК. Кроме того, РНК также обнаруживалась в тех же областях цитоплазмы (в небольших круглых органах, называемых рибосомами), где происходило производство белка.

Итак, становилось ясно, что если ДНК является хранилищем генетического кода наследственности, который каким-то образом транслировался в последовательности аминокислот, составляющие белки, то РНК играет непосредственную роль в создании таких белков. Было понятно, как нить ДНК может превратиться в копию РНК — достаточно лишь заменить Т (тимин) на У (урацил) во время копирования. Уже в 1947 году двое ученых из Страсбурга — Андре Бойвин и Роджер Вендрели предположили, что ГАЦТ-последовательности ДНК копируются подобным образом на ГАЦУ-последовательности РНК, которая действует в качестве курьера, переносящего код в цитоплазму, где впоследствии в рибосомах формируются соответствующие белки. Оставалось лишь понять, как четыре буквы ГАЦУ превращаются в 20-буквенный белковый код.

28